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In this paper we examine the constrained optimization of explicit Runge–Kutta (RK)
schemes coupled with central spatial discretization schemes to solve the one-dimensional
convection equation. The constraints are defined with respect to the correct error propaga-
tion equation which goes beyond the traditional von Neumann analysis developed in Seng-
upta et al. [T.K. Sengupta, A. Dipankar, P. Sagaut, Error dynamics: beyond von Neumann
analysis, J. Comput. Phys. 226 (2007) 1211–1218]. The efficiency of these optimal schemes
is demonstrated for the one-dimensional convection problem and also by solving the
Navier–Stokes equations for a two-dimensional lid-driven cavity (LDC) problem. For the
LDC problem, results for Re ¼ 1000 are compared with results using spectral methods in
Botella and Peyret [O. Botella, R. Peyret, Benchmark spectral results on the lid-driven cavity
flow, Comput. Fluids 27 (1998) 421–433] to calibrate the method in solving the steady
state problem. We also report the results of the same flow at Re ¼ 10;000 and compare
them with some recent results to establish the correctness and accuracy of the scheme
for solving unsteady flow problems. Finally, we also compare our results for a wave-packet
propagation problem with another method developed for computational aeroacoustics.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Considerable work has been done to improve the performance of numerical methods in solving space–time-dependent
problems by developing dispersion relation preserving (DRP) schemes. One of the early attempts was reported in [11,28]
and some recent efforts are discussed in [24,25]. A DRP scheme is one that has the numerical and the physical dispersion
relation very close to each other. For Fourier spectral methods these two are identical up to the Nyquist limit, while for other
discrete methods, closeness between the two can be realized only for some limited range of space and time steps. It is under-
stood that the dispersion relation refers to space–time dependence of the problem. Despite this, in many earlier attempts,
DRP methods were obtained by examining the spatial discretization of the first derivative only, by minimizing truncation
error that also reduces phase and dispersion error [2,28] indirectly. In [18], compact schemes were characterized for the
full-domain by a spectral analysis, with numerical group velocity used to measure dispersion error. But, the numerical dis-
persion relation was chosen incorrectly following [30]. In [1,12,15,17], space–time discretizations have been considered to-
gether to minimize the error between the numerical amplification factor and the true amplification factor. Hu et al. [12],
identified a class of low-dissipation and low-dispersion Runge–Kutta (LDDRK) schemes based on this approach. Following
the global analysis [18], correct numerical dispersion relation for combined space–time discretization schemes was identi-
fied for convection equation in [9,20,21]. These references emphasized the use of neutrally stable schemes for direct numer-
ical simulation (DNS) and acoustics problems (see also [22]). In the present work, space–time discretization has been
. All rights reserved.
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considered together to minimize dispersion and phase error, while keeping the scheme neutrally stable. Such a scheme
would provide ideal DRP property that should be used for DNS and acoustics.

To obtain DRP schemes, linear convection equation is used as a model to represent convection and wave propagation
adequately,
@u
@t
þ c

@u
@x
¼ 0; c > 0: ð1Þ
This is a non-dissipative and non-dispersive equation that convects the initial solution to the right at the group velocity (that
is equal to the phase speed c due to non-dispersive property). This provides an ideal test-bed to study numerical methods for
neutral stability, error propagation and most importantly the dispersion error [23,32]. We briefly state the principles from
[9,22,23,30] that helps an error analysis for a DRP scheme. If the unknown u is represented by its bi-lateral Fourier–Laplace
transform at the jth node of a uniformly spaced discrete grid with mesh spacing h by, uðxj; tÞ ¼

R
Uðk; tÞeikxj dk, then the exact

spatial derivative is given by, @u
@x

� �
exact ¼

R
ikU eikxj dk. For discrete methods the same spatial derivative u0j (denoted by a prime)

is represented as [14,18],
½u0j�numerical ¼
Z

ikeq U eikxj dk: ð2Þ
In evaluating the first derivative by its discrete representation, UðkÞ is multiplied by an equivalent wave number ðikeqÞ, in-
stead of the actual wave number ðikÞ. This difference is one source of errors for all discrete computations. The numerical
derivative is represented by [18,19], u0j ¼ 1

h

PN
l¼1Cjl ul, where ul is at the lth node and N is the total number of nodes used

for discretization. The constant matrix ½C� is the equivalent explicit representation of discrete representation [18] used to
evaluate the derivative. In spectral notation, this derivative is written as [18],
u0j ¼
Z

1
h

X
Cjl U eikðxl�xjÞ eikxj dk ð3Þ
using (3) in (1) provides,
dU
U
¼ � cdt

h

� �XN

l¼1

Cjl eikðxl�xjÞ ð4Þ
where the first factor on the right hand side is the CFL number ðNcÞ. The left hand side can be written in terms of the nodal
numerical amplification factor ðGj ¼ Ujðk; tðnþ1ÞÞ=Ujðk; tðnÞÞÞ and for the four-stage, fourth order Runge–Kutta time integration
scheme this is given as [9,23,32],
Gj ¼ 1� Aj þ
A2

j

2
�

A3
j

6
þ

A4
j

24
ð5Þ
where Aj ¼ Nc
PN

l¼1 Cjl eikðxl�xjÞ. If the initial condition for Eq. (1) is given by,
uðxj; t ¼ 0Þ ¼ u0
j ¼

Z
A0ðkÞeikxj dk; ð6Þ
then the general solution at any arbitrary time is obtained as,
un
j ¼

Z
A0ðkÞ ½jGjj�n eiðkxj�nbjÞ dk ð7Þ
where bj can be related to the numerical phase speed. In [18,19,30], space and time discretization was considered indepen-
dently to obtain keq and xN separately. The numerical phase speed was then erroneously written as: cN ¼ xN=keq, instead of
cN ¼ xN=k. General numerical solution of Eq. (1) can be denoted as,
uN ¼
Z

A0ðkÞ½jGj�t=Dteikðx�cN tÞdk: ð8Þ
Actual numerical dispersion relation was given by [20], xN ¼ kcN , while the exact dispersion relation is, x ¼ kc. Thus, the
normalized numerical phase speed and group velocity at the jth node for Eq. (1) is given by [9,20,23],
cN

c

h i
j
¼

bj

xDt
; ð9Þ

VgN

c

� �
j
¼ 1

Nc

dbj

dðkhÞ : ð10Þ
Theoretically, for any numerical computation one must have jGj ¼ 1 and for Eq. (1), the group velocity ðVgÞmust be equal to
the phase speed c. If one defines error as e ¼ u� uN , then the governing equation for error is given by [23],
@e
@t
þ c

@e
@x
¼ �c 1� cN

c

h i @uN

@x
�
Z

VgN � cN

k

� � Z
ik0A0½jGj�t=Dteik0ðx�cN tÞdk0

� �
dk�

Z
LnjGj
Dt

A0½jGj�t=Dteikðx�cN tÞdk: ð11Þ
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One notes that Eq. (11) is exact without any approximation – unlike the modified equation approach [26,33] those account
for truncation error by collating the approximated terms while discretizing the governing equation. The form of resultant
modified equation depends upon the methods of discretization. In contrast, the present equation clubs error based on gen-
eric numerical properties. For example, if the numerical scheme is neutrally stable, then the last term on the right hand side
of Eq. (11) would not contribute. This establishes the requirement of neutrally stable methods for the minimization of error.
The first term on the right hand side of Eq. (11) is due to the mismatch between physical and numerical phase speed ampli-
fying solution gradient and hence this is due to phase error. The second term on the right hand side of Eq. (11) has been
expressed earlier [23] in different form. The present form explains it as due to numerical dispersion. Stability analysis of
numerical methods developed for linear differential equation by von Neumann and his associates [7,8] assumes the signal
and the error to satisfy the same dynamics, due to the linearity of the governing equation. However, Eq. (11) shows that de-
spite the governing equation being linear, the signal and its associated numerical error do not follow the same dynamics. In
numerical computations, error terms evolve differently depending upon the method, while the computed signal and error
remain interlaced.

In the present work, we have developed a new strategy for optimizing the two-stage, second order ðRK2Þ; three-stage,
third order ðRK3Þ and four-stage, fourth order ðRK4Þ explicit Runge–Kutta time integration schemes along with central spatial
discretization (CD) schemes of different orders. The optimal time discretization schemes are defined with the help of the cor-
rect error propagation Eq. (11). We also compare the performance of the present optimized algorithms with some recently
developed optimal time discretization schemes in [1,6,12,15,17] and the classical four-stage, fourth order Runge–Kutta ðRK4Þ
scheme.

The paper is organized in the following manner. In the next section, the optimization problem for obtaining superior time
discretization schemes is posed that reduces errors due to dispersion. Various optimal time discretization methods are ana-
lyzed in this section. In Section 3, new optimized Runge–Kutta (ORK) schemes are analyzed using the solution of the wave
propagation problem along with the results obtained by classical Runge–Kutta and other optimal schemes which have been
proposed in the literature [1,6,12,15,17]. In Section 4, results of flow inside a 2D-square LDC for Re ¼ 1000 obtained by solving
Navier–Stokes equations are used to calibrate the methods for accuracy. Furthermore, to test the efficiency of the time dis-
cretization methods, the same problem has been solved for a higher Reynolds number of Re ¼ 10; 000. This is done with a view
to compare the dispersion properties of the schemes, as the flow is unsteady at this Re. We also solve another benchmark
propagation problem to report the speed-up of the present ORK methods as compared to RK4 and another optimal methods.

2. Mathematical formulation of the problem

We consider the general case of a autonomous system of ordinary differential equations of the form
du
dt
¼ FðuðtÞÞ; t P t0 ð12Þ
and the initial condition is given by uðt0Þ ¼ u0. This analysis is valid for partial differential equation, after the spatial discret-
ization is performed.

The general form of an explicit, pth order s-stages Runge–Kutta method for computing the numerical approximation from
un to unþ1 is
unþ1 ¼ un þ
Xs

i¼1

Wiki

ki ¼ Dt F un þ
Xi�1

j¼1

aijkj

 !
:

ð13Þ
The parameters aij’s and the weights Wi’s are chosen to make the numerical value unþ1 closer to exact value uðtnþ1Þ obtained
by Taylor series expansion for the scheme in Eq. (13). Matching of the terms determines the order of accuracy and the trun-
cation error. The coefficient must satisfy order conditions obtained by Taylor series expansion of uðtnþ1Þ. Here, we have con-
sidered only the explicit Runge–Kutta schemes for which p ¼ s i.e. the order is also equal to the number of stages. The explicit
form of these conditions for different order of accuracy are given as follows.

For the three-stage, third order Runge–Kutta ðRK3Þ method, the explicit form of the corresponding order conditions are
[5,13,16]:
W1 þW2 þW3 ¼ 1

W2 a21 þW3 ða31 þ a32Þ ¼
1
2

W2 a2
21 þW3 ða31 þ a32Þ2 ¼

1
3

W3 a32 a21 ¼
1
6
:

ð14Þ
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One can obtain the corresponding relations for RK2 scheme from the first two equations in the above by setting,
W3 ¼ 0 ¼ a31 ¼ a32.

For the four-stage, fourth order Runge–Kutta ðRK4Þ method, the explicit form of the order conditions are:
W1 þW2 þW3 þW4 ¼ 1

W2 a21 þW3 ða31 þ a32Þ þW4 ða41 þ a42 þ a43Þ ¼
1
2

W2 a2
21 þW3 ða31 þ a32Þ2 þW4 ða41 þ a42 þ a43Þ2 ¼

1
3

W3 a32 a21 þW4 ½a21 a42 þ a43 ða31 þ a32Þ� ¼
1
6

W2 a3
21 þW3 ða31 þ a32Þ3 þW4 ða41 þ a42 þ a43Þ3 ¼

1
4

W3 ½a32 a2
21 þ 2a21 a32 ða31 þ a32Þ� þW4 ½a42 a2

21 þ a43 ða31 þ a32Þ2

þ 2ða41 þ a42 þ a43Þfða31 þ a32Þa43 þ a42 a21g� ¼
1
3

W4 a43 a32 a21 ¼
1

24
:

ð15Þ
These equations are once again obtained by comparing the Taylor series expansion of uðnþ1Þ and uðtnþ1Þ. These are also given
in [5,13,16], except that we obtain an equation less than those given there. The difference is due to the splitting of the coef-
ficient of h4 in [5,13,16], as given above in a single relation in the second-last equation of Eq. (15). However, one notices that
this does not alter the value of parameters obtained for the classical method.

In the present work, optimization of time advancing explicit Runge–Kutta schemes coupled with spatial discretization is
considered to get superior DRP properties of the numerical solution for an autonomous system. This is performed by exam-
ining the error in the spectral plane, instead of working with Eqs. (14) and (15). For this purpose, we consider the time evo-
lution equation rewritten as:
@u
@t
¼ FðuÞ: ð16Þ
An explicit s-stage Runge–Kutta scheme can be written as [13]:
uðiÞ ¼ uðnÞ þ Dt
Xi�1

j¼1

aij FðjÞ ð17Þ

uðnþ1Þ ¼ uðnÞ þ Dt
Xs

j¼1

Wj FðjÞ ð18Þ
where the stage number i runs from 1 to s. The above formulation requires a lot of memory because at the ith stage all the
FðjÞ’s up to the previous stage need to be stored, as given in (17). The Runge–Kutta scheme can be implemented in a form that
requires less storage as given by [27],
uðiÞ ¼ uðnÞ þ Dtai Fði�1Þ ð19Þ

uðnþ1Þ ¼ uðnÞ þ Dt
Xs

i¼1

Wi FðiÞ: ð20Þ
Present analysis and implementations are based on this low storage form of the methods.
The amplification factor for the Runge –Kutta scheme (for p ¼ s) in k-space, can be written for Eq. (1) in the form given in [27],
Gnum ¼ 1þ
Xp

j¼1

ð�1Þj aj Aj: ð21Þ
Also for Eq. (1), one can obtain the exact amplification factor [12] as, Gexact ¼ e�iNc kh. Eq. (21) is a polynomial approximation of
Gexact and the coefficients aj’s can be either chosen to minimize the truncation error by taking aj ¼ 1=j! or by minimizing the
error in k-space, as given in Eq. (11). Hu et al. [12] considered the 1D convection equation to minimize the difference be-
tween numerical and exact amplification factors. Similarly in [1,15], an optimization was performed by defining the solution
error as the L2-norm of the difference between numerical and exact solutions, given by jGn

num � e�inNc khj ju0j2 obtained at
t ¼ nDt, where ju0j2 defining the L2-norm of the initial condition.

In the present work, the coefficient(s) aj’s in Eq. (21) are related to the parameters of the Runge–Kutta method by the
analysis in k-space. For RK2 method, this leads to relations between the ai’s and Wi’s for the low storage version in Eqs.
(19) and (20) as
W1 þW2 ¼ a1

W2 a1 ¼ a2:
ð22Þ
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Similarly, for RK3 scheme we have the following relations
W1 þW2 þW3 ¼ a1

W2 a1 þW3 a2 ¼ a2

W3 a1 a2 ¼ a3:

ð23Þ
Finally, for the RK4 scheme we have the following relations
W1 þW2 þW3 þW4 ¼ a1

W2 a1 þW3 a2 þW4 a3 ¼ a2

W3 a1 a2 þW4 a2 a3 ¼ a3

W4 a1 a2 a3 ¼ a4:

ð24Þ
Let us obtain an optimized time discretization strategy that minimizes overall error, including dissipation, phase and disper-
sion components of the basic scheme in (11). First, we consider the RK2 scheme coupled with various central difference
schemes. In the process, we left the last coefficient free in the expression for Gnum, i.e. we consider a2 ¼ a and a1 ¼ 1, so that
the method retains first order formal accuracy, while the consistency condition is satisfied. Thus, the amplification factor for
Eq. (1) is written as,
G2 ¼ 1� Aþ aA2: ð25Þ
It remains to fix the value of a via an optimization process and then using Eq. (22), we obtain the other coefficients of the
optimized two-stage, second order Runge–Kutta ðORK2Þ scheme. Similarly for the RK3 method, we leave the last two coef-
ficients in Gnum as free parameters, so that a2 ¼ b and a3 ¼ a. Once again, the method is first order accurate only. For the RK4

method, we set a3 ¼ b, and a4 ¼ a in (21), so that the resultant optimal method is formally second order accurate. Thus, the
amplification factor for Eq. (1), for the optimized ORK3 and ORK4 schemes are given respectively by:
G3 ¼ 1� Aþ bA2 � aA3 ð26Þ

G4 ¼ 1� Aþ A2

2!
� bA3 þ aA4

: ð27Þ
Having obtained a and b by optimization, one can solve (23) and (24) to obtain the optimized Runge–Kutta ðORKÞ methods.
In [12], the following objective function was minimized:
Fða; b;NcÞ ¼
Z c

0
Gnum � Gexactj j2 dðkhÞ ð28Þ
where c ¼ ap with a in ½0;1�. The same objective function is used in the present exercise. However, in addition to minimiz-
ing F, we also explicitly constrain the schemes following (11) to ensure neutral stability, minimum phase and dispersion er-
rors through the satisfaction of the following inequalities:
F1ða; b;NcÞ ¼
Z c1

0
jGj � 1j jdðkhÞ 6 �1 ð29Þ

F2ða; b;NcÞ ¼
Z c2

0

VgN

c

� �
� 1

����
����dðkhÞ 6 �2 ð30Þ

F3ða; b;NcÞ ¼
Z c3

0

cN

c

	 

� 1

��� ���dðkhÞ 6 �3 ð31Þ
where ci and �i are constants chosen to satisfy numerical properties of the basic method. Although, we prescribe a small tol-
erance in �1, we are interested in looking for numerical parameters which ensure neutral stability for large range of ðkh;NcÞ.

To solve this constrained optimization problem, we have used the grid-search technique [19] to locate the feasible region
in ða; bÞ-plane using the constraints given in (29)–(31) for different, but fixed value of Nc . While a and b are functions of Nc ,
we would like to obtain fixed values of a and b for the ORK schemes for a particular Nc , but that could be used over a longer
range of CFL number. In that sense, these values of a and b will be near-optimal.

For second ðCD2Þ, fourth ðCD4Þ and sixth order accurate ðCD6Þ spatial discretization schemes for the first derivative, one
can show that A ¼ iNc sinðkhÞ; iNc

3 ½4� cosðkhÞ� sinðkhÞ and iNc
30 ½sinð3khÞ � 9 sinð2khÞ þ 45 sinðkhÞ�, respectively. For the results

presented here, we have chosen c ¼ p=2 for the objective function and the tolerances needed in (29)–(31) for the specific
methods are as indicated below. These values depend upon the spatial discretization methods, while they do not depend
upon the temporal discretization schemes. Thus, we have used the following tolerances for CD2 spatial discretization
schemes: �1 ¼ 10�5; �2 ¼ 0:01 and �3 ¼ 0:05, while the ranges of kh used to satisfy the constraints are given by:
c1 ¼ 1:0; c2 ¼ 0:4 and c3 ¼ 1:0. For the CD4 spatial discretization scheme, the limits on kh are:
c1 ¼ 1:0; c2 ¼ 1:0; c3 ¼ 1:0 and the tolerances are: �1 ¼ 10�5; �2 ¼ 0:01 and �3 ¼ 0:003. For the CD6 spatial discretization
scheme, limits are fixed as: c1 ¼ 1:0; c2 ¼ 1:0; c3 ¼ 1:0; while the tolerances are fixed by: �1 ¼ 10�5; �2 ¼ 0:01 and
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�3 ¼ 0:007. It is noted that the constraints given by (29)–(31) makes the search for optimum value difficult for lower order
methods, for which �i’s have to be relatively higher.

2.1. Optimization of RK2 scheme coupled to CD2, CD4 and CD6 schemes

Here, we have optimized RK2 scheme, coupled to CD2; CD4 and CD6 schemes for solving Eq. (1). For this optimized scheme,
values of a as a function of Nc are shown in Fig. 1a for the three spatial discretization schemes. For the original scheme,
a ¼ 1=2, and is indicated by the dash-dotted lines in the sub-figures. For very low values of Nc , optimal values of a lie close
to 1/2 as in the classical method. For larger Nc , the value of a changes from the classical value by a very small amount.

Having fixed the value of a1 ¼ 1, one can solve Eq. (22), to fix W1; W2 and a21. This leaves one degree of freedom to choose
any one of the unknowns. We have taken W1 ¼ 0, so that W2 ¼ 1 and a21 ¼ a. This choice of W1 helps one reduce the number
of operations in implementing the ORK2 scheme which is given by,
uð1Þ ¼ uðnÞ þ aDt F uðnÞ
� �

ð32Þ
uðnþ1Þ ¼ uðnÞ þ Dt F uð1Þ

� �
: ð33Þ
2.2. Optimization of RK3 scheme coupled to CD2, CD4 and CD6 schemes

Here, we optimize the classical RK3 scheme coupled to CD2, CD4 and CD6 schemes for Eq. (1). From the basic RK3 scheme
we obtain a and b that retains the first order accuracy of time discretization, while minimizing the objective function given
by (28), subject to the constraints in (29)–(31). Results are shown in Fig. 1b, for the three spatial discretization schemes. Val-
ues of a and b used in the classical method are shown by dash-dotted lines. We note that a varies significantly from the clas-
sical value, while b remains closer to the value in RK3 scheme. This figure shows that a remains constant for Nc > 0:25,
irrespective of the spatial discretization scheme. The value of a changes for small values of Nc .

For the optimized ORK3 scheme, we fix the values of a and b (with respect to Nc) as discussed above. Three equations in
(23) are for five unknowns, allowing one to fix any two of them. Here, we have taken W1 ¼ 0 and W2 ¼ 0 to reduce the num-
ber of operations in the implementation of the ORK3 algorithm. This fixes: W3 ¼ 1; a2 ¼ b and a1 ¼ a=b. The optimal ORK3

scheme used here is given by,
Nc

a
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Fig. 1a. Variation of a in Eq. (31), with Nc for (i) ORK2 � CD2; (ii) ORK2 � CD4 and (iii) ORK4 � CD6 schemes.
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Fig. 1b. Variation of a and b in Eq. (32), with Nc for (i) ORK3 � CD2; (ii) ORK3 � CD4 and (iii) ORK3 � CD6 schemes.
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uð1Þ ¼ uðnÞ þ ða=bÞDt F½uðnÞ� ð34Þ
uð2Þ ¼ uðnÞ þ bDt F½uð1Þ� ð35Þ
uðnþ1Þ ¼ uðnÞ þ Dt F½uð2Þ�: ð36Þ
We would like to emphasize that the different choices of W1 and W2 do not alter the numerical properties of the resultant
scheme, as the expressions of Gnum for the schemes remain invariant for different choices of W1 and W2 for the ORK3 scheme,
when a and b is kept unchanged. This is also the case for the ORK2 scheme reported above and the ORK4 scheme that is re-
ported next.
2.3. Optimization of RK4 scheme coupled to CD2, CD4 and CD6 schemes

Next, the RK4 method is optimized when CD2; CD4 and CD6 methods are used for spatial discretization. The resulting sec-
ond order method provides values of a and b, are as shown versus Nc in Fig. 1c. In this case, both a and b change significantly
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Fig. 1c. Variation of a and b in Eq. (33) with Nc for (i) ORK4 � CD2; (ii) ORK4 � CD4 and (iii) ORK4 � CD6 schemes.
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from the values used in the classical scheme. However, the values of a and b remain almost similar for higher values of Nc ,
and also when one spatial discretization scheme is replaced by another.

To obtain the ORK4 scheme from the order relations in (24), we note that we have four equations for the seven unknowns.
Once again, we will freeze the coefficients a and b with respect to variations in Nc . We have chosen the weights for the ORK4

scheme to be the same as that is used in the classical RK4 scheme [13,16] i.e., W1 ¼ 1=6; W2 ¼ 1=3 and W3 ¼ 1=3. This fixes

the remaining unknowns as: W4 ¼ 1=6; a2 ¼ e=4; a3 ¼ ð12b=eÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12b=eÞ2 � ð48a=eÞ

q
and a1 ¼ 3=2� a2 � a3=2, where,

e ¼ 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 48b
p

.
The algorithm for the ORK4 scheme is given by:
uð1Þ ¼ uðnÞ þ a1 Dt F uðnÞ
� �

ð37Þ
uð2Þ ¼ uðnÞ þ a2 Dt F uð1Þ

� �
ð38Þ

uð3Þ ¼ uðnÞ þ a3 Dt F uð2Þ
� �

ð39Þ

uðnþ1Þ ¼ uðnÞ þ Dt
6

F uðnÞ
� �

þ 2F½uð1Þ� þ 2F uð2Þ
� �

þ F uð3Þ
� �� �

: ð40Þ
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2.4. Numerical properties of some specific combinations of temporal and spatial schemes

Having obtained the values of a and b for different combinations of spatial and temporal schemes, we present results for
only a few representative combinations as described below. Only the properties of higher order spatial discretization
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schemes are discussed. First, we show results for the CD4 spatial discretization method in Fig. 2a–2c. Results are compared
for the classical RK4 and six-stage – sixth order RK6 schemes along with the optimum schemes of [1,6,12,15,17] and ORK4

scheme. For the present optimal scheme, we freeze the values of a and b to values obtained for Nc ¼ 1.
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In Fig. 2a, numerical amplification factor for an interior node is shown for one-dimensional convection equation where
CD4 discretization scheme is used for space and time discretization is by various indicated methods in the figure. In the
sub-figures, regions are marked by horizontal hatched lines representing neutral stability. It is seen that between the two
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classical schemes, RK6 is superior to RK4 scheme. The optimal scheme of [6] belongs to six-stage, fourth order accuracy –
with reduced order allowing for an optimal scheme that displays neutrally stable zone similar to RK6 scheme. However,
there is no region of instability for this optimal scheme, unlike the RK6 scheme. In frame (iv) of Fig. 2a, the jGj – contours
of an optimal four-stage, second order scheme due to [1,15] are shown that has similarity with the classical RK4 and the opti-
mal scheme of [12]. When a six-stage, second order optimal scheme was considered [1,15], one notices significant improve-
ment over RK6 scheme and the one in [6] – as noted from frames (vi) and (vii) of Fig. 2a. The optimal scheme of [17] is also a
basic six-stage method, but the jGj-contours shown in frame (viii) show very little improvement even over the classical RK4

scheme shown in frame (i). Developed optimal ORK4 scheme in frame (iii) shows the best performance in terms of neutral
stability region. This is despite the fact that this is only a four-stage, second order optimal scheme. We note that there are
combinations of kh and Nc for which ORK4 method will be operational, while no other methods would work in terms of
numerical neutral stability.

In Fig. 2b, VgN=c contours for the same methods are compared in ðkh;NcÞ-plane as also shown in Fig. 2a. The classical RK6

method is slightly better than the RK4 method in terms of the DRP property. Spurious upstream propagation of waves at high
kh occurs for the same value for these two classical methods. The methods due to [1,6,15] also show similar dispersion prop-
erties. The four- and six-stage methods of [1,15] show identical dispersion property. Only ORK4 and the method of [12] show
improved dispersion properties for a region close to the origin in ðkh;NcÞ-plane.

In Fig. 2c, non-dimensional phase error term ð1� cN=cÞ is shown in ðkh;NcÞ-plane for the same methods. The method of
[12] and the ORK4 scheme show lower error as compared to all the other methods, for small values of kh and Nc. Also, one
notices a critical value of Nc , above which there is discontinuous increase in phase error for all the methods, with the critical
value of Nc marked in the frames. This value is more or less same for all the methods, with ORK4 and that due to [17] having a
lower limit.

In Fig. 3a–3c, results are shown for the CD6 spatial scheme, used along with same time discretization methods. In Fig. 3a,
jGj contours are shown for these methods in ðkh;NcÞ-plane. It is interesting to note that there is hardly any difference from
the corresponding results shown for the CD4 spatial scheme. This observation is true except for the optimized scheme of [12],
for which the neutral stability region completely disappears. For the ORK4 scheme, a negligible reduction in the value of Nc is
noted, up to which one achieves neutral stability.
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However, using higher order spatial discretization schemes improves numerical dispersion and phase error properties. In
Fig. 3b, the dispersion properties of same time integration schemes are compared with the following changes noted: (i) The
critical value above which the numerical solution travels upstream due to spurious dispersion, increases marginally from
kh ¼ 1:8 to kh ¼ 1:93; (ii) the region of �1% tolerance in the value of VgN=c improves significantly for all the methods. How-
ever, the best improvement is seen for the present scheme and that due to [12]. It is noted that the improvement in disper-
sion property must be the main reason for adopting higher order accurate spatial schemes. Similar improvements are noted
also in the phase error property, as shown in Fig. 3c. However, the critical value of Nc , above which phase jumps abruptly is
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lowered, by about 15%. In Eq. (11), we noted that the first term on the right hand side affects the error evolution via this
ð1� cN=cÞ term. This contribution will be significant for solution with sharp gradients (as it depends upon @uN

@x also).
Figs. 2a–2c and 3a–3c indicate the effects of dispersion error that can not be simply eliminated or reduced by grid refinement
alone.
3. Solving wave propagation problem

Numerical properties of Figs. 1a–1c, 2a–2c, 3a–3c determine the levels of error and further careful tests are conducted to
highlight these by solving Eq. (1). The optimization performed here and also in [1,6,12,15,17], are made based on this equa-
tion as the objective function. However, in the present effort the optimization process is taken further by treating it as a con-
strained optimization problem, with the constraints minimizing errors identified in (11). To test for errors contributed by
jGj– 1, we have considered propagation of a wave-packet, as shown in Fig. 4a–4c. The wave-packet is given by,
uðxÞ ¼ e�0:5ðx�5Þ2 cos½k0ðx� 5Þ� and in the present exercise, a domain 0 6 x 6 30 with constant grid spacing ðh ¼ 0:01Þ, is used
for all reported computations. The problem has been treated here as being periodic in the domain, with the wave-packet
defined by k0h ¼ 0:40, and solution obtained by four time integration schemes for Nc ¼ 0:97. In Fig. 4a, computed results
obtained with CD2 spatial scheme and classical RK4 time integration method are compared with exact solution, at the indi-
cated time instants. From the solution at t ¼ 400 one notes mild attenuation of the signal, as well as dispersion error. Such
errors increase with time, as noted from the snapshots at t ¼ 600 and 800. In Fig. 4b, similar comparison is shown between
the exact and the numerical solution obtained using the methods of [12] for time discretization along with CD2 spatial dis-
cretization. In Fig. 4b(i), numerical results obtained by the four-stage optimized method due to [12] are displayed. Here, re-
sults show slightly lower dispersion error, as compared to the results of Fig. 4a. Also, instead of attenuation of signal, one
notices mild amplification – that is consistent with the trend shown for the jGj contours in Fig. 2a and 3a for this time dis-
cretization method when used with CD4 and CD6 spatial discretizations, respectively. In [12], the authors also have suggested
using time integration by a two-step alternating method, in which during the first step classical RK4 scheme is used that is
followed by an optimized six-stage, second order Runge–Kutta method. These results are shown in Fig. 4b(ii). While the opti-
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mized four-stage method was found to be mildly unstable, the two-step alternating method produced results those are found
to be mildly attenuated. Thus, it appears that the improvement is brought about by significant increase in additional two-
stages of computations.

In Fig. 4c, the exact solution is compared with the numerical results obtained using the present optimal ORK4 time inte-
gration scheme with CD2 scheme for spatial discretization. While one notices almost similar dispersion error as compared to
the method of [12], a distinct improvement is seen for the amplitude envelope that does not amplify or attenuate, even at
t ¼ 800.

Another test has been performed to study the dispersion and dissipation error for the propagation of the same packet, for
which results are shown in Fig. 5a–5c. In this case with CD6 spatial discretization scheme, the numerical parameters,
Nc ¼ 0:8904 and k0h ¼ 1:0562 have been chosen to explain certain properties shown in Fig. 3a–3c, for the same four time
integration schemes used in Fig. 4. In Fig. 5a, numerical results are shown for RK4 � CD6 method that display larger amount
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of dissipation as compared to the classical RK4 � CD2 scheme of Fig. 4a. At t ¼ 400, the signal amplitude comes down to less
than 0.025, starting from an initial unit amplitude. One can also note a slightly reduced dispersion error (comparing the exact
location of the center of the packet in the figure by a vertical dash-dotted line with the numerical location), as compared to
that in Fig. 4a. This behavior follows the contour values shown in Fig. 3a–3c. In Fig. 5b(i), numerical solution obtained by the
optimized four-stage method of [12] are displayed. In Fig. 5b(ii), results are shown for the two-step alternating method as
described for the results of Fig. 4b(ii). As noted in Fig. 4b(ii), here also one notices attenuation of the wave-packet. Also,
the dispersion is lesser in this case. Numerical results shown in Fig. 5c obtained by ORK4 method, shows significantly less
attenuation, while the solution does not show any dispersion. The choice of the numerical parameters for Figs. 4 and 5 were
made to highlight specifically the comparative aspects of dissipation and dispersion.

Finally to test error due to phase mismatch given by ð1� cN=cÞ, we have considered the propagation of a pulse with trap-
ezoidal form, as marked in Fig. 6a by ABCD, at t ¼ 0. The slant angles have been taken as 0:45p and 0:55p at A and D, respec-
tively. Such discontinuities in slope give rise to Gibbs’ phenomenon [21]. We have chosen the values of Nc ¼ 0:9400 and
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k0h ¼ 1:3660 to highlight the Gibbs’ phenomenon triggered by phase error, displayed by three time integration methods. The
solution of (1) with this initial condition has been performed for a time up to t ¼ 900. Displayed results in Fig. 6a show up-
stream propagation of spurious oscillations caused by phase and dispersion errors via Gibbs’ phenomenon. Reason behind
the Gibbs’ phenomenon and a method to suppress spurious oscillations is reported in [21]. For classical RK4 method, one
notices small upstream propagation of oscillations originating from the slope-discontinuity at A. The strength of these oscil-
lations would increase, if the angle at A is further increased to p=2. Results using the method of [12] also show the same
Gibbs’ phenomenon, with lesser amplitude but over a longer upstream stretch. Best results are obtained using the ORK4 time
integration strategy, as noted from the solution at t ¼ 900 in Fig. 6a. Here, the Gibbs’ phenomenon is virtually absent. We
note that this phenomenon originates due to dispersion and phase error properties of numerical methods – as indicated
by (11). In some numerical methods, the oscillations caused by dispersion magnify when they move upstream. For such
cases, the dissipative nature of the basic method as given by jGj can suppress Gibbs’ phenomenon. On the other hand, for



X

U

0 20 40 60 80
-5

0

5

10

15

20

25

30

35

t = 0

Initial condition

A

B C

D

X

U

52 53 54 55 56
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1
t = 900

RK4 - CD6

A

X

U

52 53 54 55 56
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

t = 900

LDDRK- CD6

A

X

U

52 53 54 55 56
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

t = 900

ORK4 -CD6

A

Fig. 6a. Gibbs’ phenomenon for the propagation of a trapezoid-ramp function following Eq. (1), as computed by different indicated methods using
k0h ¼ 1:3660 and Nc ¼ 0:9400. Here, the upstream propagating wavelets originate at the left bottom point with slope discontinuity imposed via the initial
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a numerical method that is neutrally stable, presence or absence of Gibbs’ phenomenon depends upon the phase and disper-
sion properties, as noted for the present ORK4 � CD6 method.

Similar such oscillations due to phase and dispersion error associated with Gibbs’ phenomenon obtained at C is shown in
Fig. 6b. Once again, the solutions indicate highest error for the classical RK4 method, followed by the method of [12], while
the ORK4 method provides the most accurate result.

4. Solving 2D lid-driven cavity problem

The flow inside a square lid-driven cavity (LDC) is a benchmark problem often used to calibrate any new numerical meth-
od for solving the Navier–Stokes equations. This problem is preferred due to its definitive computational domain and unique
boundary conditions. There are many papers available in the literature on this topic, but we will compare our results ob-
tained with optimized Runge–Kutta methods with that presented in Botella and Peyret [3] and [24,25]. The results of Botella
and Peyret [3] are noteworthy as these were obtained using highly accurate Chebyshev collocation spectral method. We will
compare with this result for Re ¼ 1000 obtained using N ¼ 160 terms Chebyshev polynomial representation. While the re-
sults in [3] are for steady flow, additional validation and check for accuracy will be made for the same geometry for
Re ¼ 10;000, the solution of which is unsteady and shows polygonal vorticity patterns at the center of the cavity [24,25].

Before we present results of Navier–Stokes equations by ORK3 method, we compare its numerical property in solving the
wave problem with the classical RK4 method. For both these methods, CD4 spatial discretization has been used. One notes
from the literature that CD2 spatial discretization requires a very large number of grid points- as seen in [4] where a
ð1024� 1024Þ grid was required for this flow at Re ¼ 1000. In Fig. 7, we have compared the contours of jGj, VgN=c and
ð1� cN=cÞ for ORK3 � CD4 and RK4 � CD4 methods in solving Eq. (1). In the top frames of Fig. 7, jGj contours for both the
methods have been shown, from which one can see that ORK3 method has better neutral stability property as compared
to the classical RK4 method. In the same way, the dispersion property is also better for the ORK3 method as seen in middle
frames of Fig. 7. However, the phase error for the ORK3 method is slightly higher in comparison in terms of a critical limit for
Nc . However, this error for ORK3 is significantly lower near the origin of ðkh;NcÞ-plane. Moreover, this error is of lesser rel-
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evance for incompressible flow simulations. We also note that the ORK3 method is only first order accurate as compared to
the fourth order classical RK4 method. Despite this difference in the order of the methods, ORK3 provides lower dissipation
and dispersion errors, as the process of optimization minimizes error in the spectral plane. We present the solution of incom-
pressible Navier–Stokes equations using ORK3 method of time discretization next.

Here the two-dimensional incompressible, viscous flow governed by the Navier–Stokes equations is solved in stream
function-vorticity formulation given by,
@2w
@x2 þ

@2w
@y2 ¼ �x ð41Þ

@x
@t
þ u

@x
@x
þ v @x

@y
¼ 1

Re
@2x
@x2 þ

@2x
@y2

 !
ð42Þ

u ¼ @w
@y

ð43Þ

v ¼ � @w
@x

ð44Þ
where x is the only nonzero component of the vorticity vector normal to the plane of the flow; w represents the stream func-
tion and ðu; vÞ are the Cartesian components of the velocity in x and y directions, respectively. The ðw�xÞ formulation is
preferred due to its inherent accuracy and computational efficiency in satisfying mass conservation exactly everywhere.
We have used ORK3 scheme for solving Eqs. (41) and (42) and to avoid errors out of mesh non-uniformities, we have used
uniform grids with (751) points.

In Fig. 8, we have shown results obtained using ORK3 and RK4 methods of time integration for the vorticity transport
equation (VTE), for Re ¼ 1000 at t ¼ 400. We have used the Bi-CGSTAB method [31] in solving the stream function equation
and the residual convergence criteria for this is taken as 10�6. The solution is advanced in time till t ¼ 400 when x is reduced
to 10�10 i.e., till we have reached a steady state. Results showing stream function (top) and vorticity (bottom) in Fig. 8, ob-
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tained by these time integration methods are indistinguishable. These results are quite accurate, as shown by comparing
quantitatively some solution parameters in Table 1 with the results from [3,4,10]. Present results match accurately up to
fourth decimal places for the maximum and minimum values of w in the domain. Both the time integration methods provide
accurate enough results, with the ORK3 method using only three-stages as compared to four-stages of computing with RK4

method. Thus, one obtains more than 33 % speed-up in computing. We note that the combined compact difference ðCCDÞ
scheme of [24,25] provides results with higher accuracy, using a ð256� 256Þ grid for Re ¼ 10;000. As the error in ORK3 is
less compared to RK4 method, the convergence of the iterative solution for (41) is achieved quicker. Based on the properties
shown in Fig. 7, we have taken larger time steps with the ORK3 method. All these factors taken together, allow accelerated
computations with ORK3 by a factor of two, as compared to the RK4 method.

While the results shown in Fig. 8 and Table 1, validate the accuracy of methods based on steady state solution, it is impor-
tant to actually compare the time advancement methods for a time-dependent flow. For this reason, we have furthermore
. 9 9. 8. 5

.

5



0
0.

25
0.

5
0.

75
1

00
.1

0.
2

0.
3

0.
40

.5
0.

6
0.

7
0.

8
0.

91
O

RK
3

-
C

D
4

t
=

4
0

0
(

i
)

XY 0 0.25 0.5 0.75 1

0

0.1
0.2
0.3
0.40.50.6
0.7
0.8
0.9

1 RK4 - C D 4 t = 4 0 0 (i)

XY0 0.25 0.5 0.75 10

0.1
0.2
0.3
0.4

0.5

0.6

0.7

0.8

0.9

1(ii)

X

Y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(ii)

Fig. 8. Computed solution for LDC problem for Re ¼ 1000 at t ¼ 400: (i) stream function contours using ORK3 � CD4 and RK4 � CD4 schemes; (ii) vorticity
contours using ORK3 � CD4 and RK4 � CD4 schemes on a uniform grid of size ð751� 751Þ.

Table 1
Maximum and minimum values of stream function computed by different methods for Re ¼ 1000.

S. no. Methods and grids wmax wmin

1 Botella and Peyret [3] (N = 160) 0.1189366 �1:729717� 10�3

2 Ghia et al. [10] (129 � 129) 0.117929 �1:75102� 10�3

3 Present ORK3 method (751 � 751) 0.118902 �1:72932� 10�3

4 Classical RK4 method (751 � 751) 0.118902 �1:72932� 10�3

5 Bruneau and Saad [4] (1024 � 1024) 0.11892 �1:7292� 10�3
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computed the LDC flow for Re ¼ 10;000 using ORK4 � CD4 and RK4 � CD4 methods using a ð512� 512Þ grid and compared
the results with the accurate solutions of [24,25]. The time step taken for all the computations is Dt ¼ 0:001. The CCD scheme
used in [24,25] is an accurate spatial discretization method with reduced error due to multiple causes, while requiring sig-
nificantly fewer number of grid points. To solve the LDC flow problem for Re ¼ 10;000, a grid with ð257� 257Þ points was
chosen and the results were obtained using RK4 time integration method. Results obtained using CCD scheme are accurate
and show triangular vortex at the center of the cavity during a short interval of time. The structures appear due to forcing by
(i) aliasing error caused near the top-right corner and (ii) error caused by damping (as shown by the third term on right hand
side of (11)). In Fig. 9, we have shown vorticity contours obtained by three methods, as indicated in the figure. In the top
frames, results are shown for the RK4 � CD4 method at t ¼ 1060 and 1100. One notices rectangular vortex in the center of
the cavity. But, that is damped very quickly due to numerical attenuation for the chosen Nc ¼ 0:5 – as seen from Fig. 2a.
In the middle frames of Fig. 9, results are shown for the same time instants obtained using the ORK4 � CD4 method. This
is formally a second order accurate method, yet it provides higher accuracy due to neutral stability and lower dispersion er-
ror. In the bottom frames, results obtained by CCD� RK4 method are shown. Both the frames for this method show a weak
Y
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triangular vortex at the center. The superior performance of ORK4 � CD4 over RK4 � CD4 method is clearly observed from the
properties shown in Fig. 2a–2c. In Fig. 9, improvement of ORK4 method is noted by noticing the similarities of the solution
with that obtained by the CCD� RK4 method.
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5. Benchmark problem for DRP schemes for application in CAA

This problem is taken from [29] that contains results for problems of computational aeroacoustics. The authors in [29]
presented results for an initial value problem
@u
@t
þ @u
@x
¼ 0 ð45Þ
that is solved subject to the initial condition given by,
u ¼ 0:5e½�ðln 2Þðx=3Þ2 � ð46Þ



X

U

280 290 300 310 320 330 340 350
-0.1

0

0.1

0.2

0.3

0.4

0.5(i)

t = 800

X

U

280 290 300 310 320 330 340 350
-0.1

0

0.1

0.2

0.3

0.4

0.5(ii)

X

U

280 290 300 310 320 330 340 350
-0.1

0

0.1

0.2

0.3

0.4

0.5(iii)

Fig. 10b. Comparison between computed (solid line) and exact (dotted line) solutions of the one-dimensional wave equation with h ¼ 0:5 and Dt ¼ 0:2: (i)
RK4 � CD4; (ii) LDDRK [3] - CD4 and (iii) ORK4 � CD4 schemes.

M.K. Rajpoot et al. / Journal of Computational Physics 229 (2010) 3623–3651 3649
in the computational domain �20 6 x 6 450. In Fig. 10a, results obtained by RK4 � CD4, LDDRK method of [12] and
ORK4 � CD4 with the computational parameters given by h ¼ 0:1 and Dt ¼ 0:01 are compared with exact solution and among
themselves. For these computational parameters, all the three methods show results that are indistinguishable from the ex-
act solution. When we performed another set of calculations shown in Fig. 10b using h ¼ 0:5 and Dt ¼ 0:2, the computed
solutions show some differences. For example, results obtained by the classical RK4 � CD4 method show Gibbs’ phenomenon
at the foot of the wave-packet on the upstream side. These spurious oscillations correspond to kh P 1:8 for the properties
shown in Fig. 2b. Same kind of upstream propagating waves are predicted for all the three methods with the same onset
value of kh ¼ 1:8. The difference among the upstream part of the three computed solutions can be explained from the jGj
contours shown in Fig. 2a. These upstream propagating waves are created due to numerical error. For the classical
RK4 � CD4 method, this numerical error for Nc ¼ 0:4 is due to numerical attenuation. For the LDDRK method, the numerical
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error for the same Nc is due to mild instability (as seen in Fig. 2a). In comparison to these two methods, the proposed
ORK4 � CD4 method is neutrally stable across all kh range for this Nc . Absence of input via numerical error for the
ORK4 � CD4 method is responsible for lesser Gibbs’ phenomenon. However, for all the three methods, one notices a very
small amount of dispersion of the solution at large time, t ¼ 800.
6. Conclusion

In the present work, we have proposed new Runge–Kutta temporal discretization schemes by optimizing the classical
two-stage, second order ðRK2Þ; three-stage, third order ðRK3Þ and four-stage, fourth order ðRK4Þ schemes coupled with cen-
tral difference schemes for spatial discretization subject to constraints on neutral numerical amplification factor, minimal
dispersion and phase errors in solving one-dimensional convection equation. These methods have been compared with other
optimized time integration methods reported in [1,6,12,15,17]. In these methods, the objective function is designed to min-
imize the difference between numerical and ‘‘exact” amplification factor. The difference of the present methods from others
is due to the requirement of satisfying constraints that originate from the actual error propagation equation (Eq. (11)). Since
the attempt is on reducing error by considering spatial and temporal discretization schemes together, this gives rise to true
DRP schemes. Such schemes are suitable for convection dominated flows and problems of acoustics.

The schemes proposed are of lower order due to the imposition of constraints on neutral stability, dispersion and phase
error. For example, ORK2 and ORK3 schemes obtained from classical two-stage and three-stage explicit Runge–Kutta meth-
ods, are nominally first order accurate, but provide larger allowable time steps. Numerical properties in Figs. 2 and 3 estab-
lish the superiority of the proposed Runge–Kutta schemes in satisfying neutral stability and lower dispersion error. The
ORK4 � CD4 method has the largest continuous range in ðkh;NcÞ -plane where the method is neutrally stable as seen from
Fig. 2a. This is followed by the methods in [6] and [1,15]. In contrast, methods of [12,17] looks similar to classical
RK4 � CD4 method. The dispersion property in Fig. 2b is seen to be the best for the ORK4 � CD4 method followed by the
LDDRK method [12], with other methods showing no improvements over the classical method. The optimized methods
for CD6 spatial discretization, exhibit the best neutral stability property as compared to other methods involving four-
and six-stage schemes. The next best set of results are for the classical RK6 method and that due to [1,15], as seen in
Fig. 3b. It is noted that increase of spatial discretization accuracy results in further improvement of dispersion property.

The improvements which have been achieved in the work are as follows:

(1) Better neutral stability property of the ORK methods is demonstrated for the propagation of a wave-packet as com-
pared with LDDRK schemes [12] and the classical RK4 method in Fig. 4a–4c. The LDDRK method [12] is slightly unsta-
ble and another scheme from [12] based on using a combination of four- and six-stage RK4 method is studied and
results shown in Fig. 4b(ii).

(2) DRP property of the optimized schemes are also compared with the same wave-packet propagation case, computed
with different numerical parameters and the results are shown in Fig. 5a–5c. The classical RK4 � CD6 method experi-
ences large dissipation with negligible dispersion. In Fig. 5b, results obtained by two methods of [12] are shown. For
the four-stage LDDRK method, results show larger dissipation as compared to the two-step alternating RK4 time inte-
gration schemes. Results shown in Fig. 5c obtained using ORK4 � CD6 method show zero dispersion and significantly
lower attenuation.

(3) The effectiveness of the optimized schemes are compared, by solving Navier–Stokes equations for the flow in a square
lid-driven cavity for Re ¼ 1000 with ORK3 � CD4 and RK4 � CD4 methods, in Fig. 8. The speed-up of the ORK3 � CD4

method over the RK4 � CD4 method is obtained due to fewer stages of computations and better error properties that
allows taking larger time steps. All these taken together accelerate computation by a factor of at least two. Further-
more, better DRP property of the optimized schemes is shown by solving unsteady LDC flow for Re ¼ 10;000 using
ORK4 � CD4 and RK4 � CD4 schemes. The results are compared with that reported in [24,25] in Fig. 9. It is noted that
the ORK4 � CD4 is superior to RK4 � CD4 method in capturing polygonal vortical structures in the core of the cavity
[24,25].

(4) We have also solved the initial value problem (Eqs. (45) and (46)) [29], for the propagation of a wave-packet using
RK4 � CD4, LDDRK [3] – CD4 and ORK4 � CD4 schemes and compared the results with exact solution. Results in
Fig. 10a are indistinguishable for the chosen h and Dt. When h and Dt are increased, results obtained by the classical
RK4 � CD4 and LDDRK [12] – CD4 methods show Gibbs’ phenomenon on the upstream side, as shown in Fig. 10b. The
ORK4 � CD4 method shows Gibbs’ phenomenon less compared to other schemes.

The parameters a and b in (26) and (27) for the optimized Runge–Kutta methods have been chosen here for large values of
Nc where these do not vary appreciably. There are possibilities of improving the scheme, by obtaining exact values of a and b
for the exact CFL number.
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